Contribution to American Geophysical Union (AGU) Fall Meeting – Chiemgau Impact “Earthquake” Features

  • EP53B-1700: Meteorite Impact “Earthquake” Features (Rock Liquefaction, Surface Wave Deformations, Seismites) from Ground Penetrating Radar (GPR) and Geoelectric Complex Resistivity/Induced Polarization (IP) Measurements, Chiemgau (Alpine Foreland, Southeast Germany)
  • Kord Ernstson 
    • Faculty of Philosophy I, University of Würzburg
  • Jens Poßekel
    • Geophysik Poßekel Hornhof 14, 45479 Mülheim

Friday, 15 December 2017  13:40 – 18:00 New Orleans Ernest N. Morial Convention Center – Poster Hall D-F – Session EP53B Earth and Planetary Surface Processes General Contributions Posters

Abstract. – Densely spaced GPR and complex resistivity measurements on a 30,000 square meters site in a region of enigmatic sinkhole occurrences in unconsolidated Quaternary sediments have featured unexpected and highlighting results from both a meteorite impact research and an engineering geology point of view. The GPR measurements and a complex resistivity/IP electrical imaging revealed extended subrosion depressions related with a uniformly but in various degrees of intensity deformed loamy and gravelly ground down to at least 10 m depth. Two principle observations could be made from both the GPR high-resolution measurements and the more integrating resistivity and IP soundings with both petrophysical evidences in good complement. Subrosion can be shown to be the result of prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Funnel-shaped structures with diameters up to 25 m near the surface and reaching down to the floating ground water level at 10 m depth were measured. GPR radargrams could trace prominent gravelly-material transport bottom-up within the funnels. Seen in both GPR tomography and resistivity/IP sections more or less the whole investigated area is overprinted by wavy deformations of the unconsolidated sediments with wavelengths of the order of 5 – 10 m and amplitudes up to half a meter, likewise down to 10 m depth. Substantial earthquakes are not known in this region. Hence, the observed heavy underground disorder is considered the result of the prominent earthquake shattering that must have occurred during the Holocene (Bronze Age/Celtic era) Chiemgau meteorite impact event that produced a 60 km x 30 km sized crater strewn field directly hosting the investigated site. Depending on depth and size of floating aquifers local concentrations of rock liquefaction and seismic surface waves (probably LOVE waves) to produce the wavy deformations could develop, when the big disintegrated meteoroid (a loosely bound asteroid or a comet of roughly estimated 1 km size) hit the ground. The observations in the Chiemgau area emphasize that studied paleoliquefaction features and wavy deformations (e.g. seismites) need not necessarily have originated solely from paleoseismicity but can provide a recognizable regional impact signature.