The Chiemgau impact – don’t believe in Wikipedia!

The Chiemgau impact – don’t believe in Wikipedia!

The Wikipedia page “Chiemgau impact hypothesis” is still manipulating science and defaming scientific research for the worst, when the visitor reads in a few sentences that the impact hypothesis is obsolete.

For some years now we have been trying to protest against this misleading of Wikipedia readers and the scientific community – in vain. Corrections we made with a host of documented quotations were deleted at once – apparently with the tolerance or even the forcing of the administrator. The initiators of this manipulation, partly close to an insult, are largely known to us as totally unrelated to the scientific research subject, which does not change the situation.

For Wikipedia, this is not a glorious fact; the claim to encyclopedic honesty and correctness is not fulfilled in this case.

Comprehensive and consistent information:

The visitor and reader of this website is requested to use honest, scientifically correct and according to strict scientific rules oriented information of this website about the Chiemgau impact.. A compilation of the scientific findings, published internationally at renowned congresses and in peer-review journals, proves the existence of what is probably the largest terrestrial meteorite crater strewn field, which is also widely accepted internationally.

Papers on the Chiemgau impact research in international journals and as contributions to international conferences

Rappenglück, M.A., Rappenglück, B., Ernstson, K. (2018):Cosmic collision in prehistory. The Chiemgau Impact: research in a Bavarian meteorite crater strewn field.- Zeitschrift für Anomalistik, 17 (2017), S. 235–260 (in German). Abstract

Ernstson, K. & Poßekel, J. (2017): Meteorite Impact “Earthquake” Features (Rock Liquefaction, Surface Wave Deformations, Seismites) from Ground Penetrating Radar (GPR) and Geoelectric Complex Resistivity/Induced Polarization (IP) Measurements, Chiemgau (Alpine Foreland, Southeast Germany). AGU Fall Meeting, 11-15 Dec. 2017 New Orleans. Abstract Poster

Procházka V. Trojek T. (2017): XRF- and EMP- Investigation of Glass Coatings and Melted Domains of Pebbles from Craters in Chiemgau, Germany. Lunar an Planetary Science Conference XLVIII. Abstract #2401.pdf.

Ernstson, K. (2016): EVIDENCE OF A METEORITE IMPACT-INDUCED TSUNAMI IN LAKE CHIEMSEE (SOUTHEAST GERMANY) STRENGTHENED.EVIDENCE OF A METEORITE IMPACT-INDUCED TSUNAMI IN LAKE CHIEMSEE (SOUTHEAST GERMANY) STRENGTHENED.. 47th Lunar and Planetary Science Conference, 1263.pdf.

V. Procházka, G. Kletetschka (2016): Evidence for superaparamagnetic nanoparticles in limestones from Chiemgau crater field, SE Germany. 47th Lunar and Planetary Science Conference, 2763.pdf

M. A. Rappenglück, F. Bauer, K. Ernstson, M. Hiltl (2014): Meteorite impact on a micrometer scale: iron silicide, carbide and CAI minerals from the Chiemgau impact event (Germany). – Problems and perspectives of modern mineralogy (Yushkin Memorial Seminar–2014) Proceedings of mineralogical seminar, Syktyvkar, Komi Republic, Russia 19–22 May 2014. Abstract POSTER

Ernstson, K., Hilt, M., Neumair, A. (2014): Microtektite-Like Glasses from the Northern Calcareous Alps (Southeast Germany): Evidence of a Proximal Impact Ejecta . – 45th Lunar and Planetary Science Conference,. LPI Contribution No. 1777, #1200.pdf.

Rappenglück, M.A., Bauer, F. Hiltl, M., Neumair, A., K. Ernstson, K. (2013): Calcium-Aluminium-rich Inclusions (CAIs) in iron silicide matter (Xifengite, Gupeiite, Hapkeite): evidence of a cosmic origin – 76th Annual Meteoritical Society Meeting, Meteoritics & Planetary Science, Volume 48, Issue s1, Abstract #5055. POSTER

Bauer, F. Hiltl, M., Rappenglück, M.A., Neumair, A., K. Ernstson, K. (2013): Fe2Si (Hapkeite) from the subsoil in the alpine foreland (Southeast Germany): is it associated with an impact? – 76th Annual Meteoritical Society Meeting, Meteoritics & Planetary Science, Volume 48, Issue s1, Abstract #5056. POSTER

Neumair, A., Ernstson, K. (2013): Peculiar Holocene soil layers: evidence of possible distal ejecta deposits in the Chiemgau region, Southeast Germany – 76th Annual Meteoritical Society Meeting, Meteoritics & Planetary Science, Volume 48, Issue s1, Abstract  #5057. POSTER

Ernstson, K., Müller, W., Neumair, A. (2013): The proposed Nalbach (Saarland, Germany) impact site: is it a companion to the Chiemgau (Southeast Bavaria, Germany) impact strewn field? – 76th Annual Meteoritical Society Meeting, Meteoritics & Planetary Science, Volume 48, Issue s1, POSTER  Abstract #5058.

K. Ernstson, T. G. Shumilova, S. I. Isaenko, A. Neumair, M. A. Rappenglück (2013): From biomass to glassy carbon and carbynes: evidence of possible meteorite impact shock coalification and carbonization. – Modern problems of theoretical, experimental and applied mineralogy (Yushkin Memorial Seminar–2013): Proceedings of mineralogical seminar, Syktyvkar: IG Komi SC UB RAS, 2013. 546 p POSTER

S. Isaenko, T. Shumilova, K. Ernstson, S. Shevchuk, A. Neumair, and M. Rappenglück (2012): Carbynes and DLC in naturally occurring carbon matter from the Alpine Foreland, South-East Germany: Evidence of a probable new impactite. – European Mineralogical Conference, Vol. 1, EMC2012-217, 2012., POSTER

B. RAPPENGLÜCK, K. ERNSTSON, I. LIRITZIS, W. MAYER, A. NEUMAIR, M. RAPPENGLÜCK and D. SUDHAUS (2012): A prehistoric meteorite impact in Southeast Bavaria (Germany): tracing its cultural implications. – 34th International Geological Congress, 5-10 August 2012 – Brisbane, Australien. Abstract

Shumilova, T. G.,  Isaenko S. I.,   Makeev B. A.,   Ernstson K.,   Neumair A.,  Rappenglück M. A. (2012): Enigmatic Poorly Structured Carbon Substances from the Alpine Foreland, Southeast Germany:  Evidence of a Cosmic Relation. 43nd Lunar and Planetary Science Conference, 1430.pdf. Abstract.

Ernstson, K. & Neumair, A. (2011), Geoelectric Complex Resistivity Measurements of Soil Liquefaction Features in Quaternary Sediments of the Alpine Foreland, Germany, Abstract NS23A-1555 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec. POSTER  Abstract

Neumair, A. & Ernstson, K. (2011), Geomagnetic and morphological signature of small crateriform structures in the Alpine Foreland, Southeast Germany, Abstract GP11A-1023 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec. POSTER  Abstract

M. Hiltl, F. Bauer, K. Ernstson, W. Mayer, A. Neumair, and M.A. Rappenglück (2011): SEM and TEM analyses of minerals xifengite, gupeiite, Fe2Si (hapkeite?), titanium carbide (TiC) and cubic moissanite (SiC) from the subsoil in the Alpine Foreland: Are they cosmochemical? – 42nd Lunar and Planetary Science Conference (2011), 1391.pdf Abstract

K. Ernstson, C. Sideris, I. Liritzis, A. Neumair (2012): THE CHIEMGAU METEORITE IMPACT SIGNATURE OF THE STÖTTHAM ARCHAEOLOGICAL SITE (SOUTHEAST GERMANY). – Mediterranean Archaeology ans Archäometry, 12, 249-259.

Ernstson, K., Mayer W., Neumair, A., and Sudhaus, D. (2011): The sinkhole enigma in the alpine foreland, Southeast Germany: Evidence of impact-induced rock liquefaction processes. – Cent. Eur. J. Geosci., 3(4), 385-397.  DOI: 10.2478/s13533-011-0038-y

Liritzis, N. Zacharias, G.S. Polymeris, G. Kitis, K. Ernstson, D. Sudhaus, A. Neumair, W. Mayer, M.A. Rappenglück, B. Rappenglück (2010): THE CHIEMGAU METEORITE IMPACT AND TSUNAMI EVENT (SOUTHEAST GERMANY): FIRST OSL DATING. – Mediterranean Archaeology and Archaeometry, Vol. 10, No. 4, pp. 17‐33.

Barbara Rappenglück, Michael A. Rappenglück, Kord Ernstson, Werner Mayer, Andreas Neumair, Dirk Sudhaus & Ioannis Liritzis (2010): The fall of Phaethon: a Greco-Roman geomyth preserves the memory of a meteorite impact in Bavaria (south-east Germany). – Antiquity, 84, 428-439.

Ernstson, K., Mayer, W., Neumair, A., Rappenglück, B., Rappenglück, M.A., Sudhaus, D. and Zeller, K.W. (2010): The Chiemgau crater strewn field: evidence of a Holocene large impact in southeast Bavaria, Germany. – Journal of Siberian Federal University, Engineering & Technology, 1 (2010 3) 72-103.

Rappenglück, B., Ernstson, K., Mayer, W., Neumair, A. Rappenglück, M.A., Sudhaus, D., and Zeller, K.W. (2009):: The Chiemgau impact: An extraordinary case study for the question of Holocene meteorite impacts and their cultural implications. – In: Belmonte, J. A. (ed.), Proceedings of the International Conference on Archaeoastronomy, SEAC 16th 2008 “Cosmology across Cultures. Impact of the Study of the Universe in Human Thinking”, Granada September 8-12, 2008, A.S.P. Conf. Ser., 2009.

Barbara and Michael Rappenglück (2006): Does the myth of Phaethon reflect an impact? – Revising the fall of Phaethon and considering a possible relation to the Chiemgau Impact. – Mediterranean Archaeology and Archaeometry, Proceedings of the International Conference on Archaeoastronomy, SEAC 14th 2006, „Ancient watching of cosmic space and observation of astronomical phenomena“, Vol. 6, No. 3 (2006), 101-109.

Continue reading

Chiemgau impact – pink quartz

Pink quartz – a new, meteorite impact-related origin? Part 1: Observations and first hypothesis of formation PDF DOWNLOAD

Kord Ernstson* (2018)

Abstract

Pink quartz, not to be confused with rose quartz, is an extremely rare color variety, which is completely transparent and is only known from a few occurrences worldwide. It is believed that the pink color is due to small amounts of aluminum and phosphorus that substitute silicon, and exposure of the quartz to natural gamma radiation. Sands with a dominating proportion of pink quartz excavated from the soil and extracted from a breccia layer in the crater strewn field of the Chiemgau meteorite impact suggest that normally colorless quartz sand was irradiated during the impact event and may possibly be found at other impact sites.

Key words: Pink and rose quartz, Chiemgau meteorite impact, neutron-gamma radiation

*Faculty of Philosophy I, University of Würzburg, Germany, kernstson@ernstson.de

 

pink quartz grains new model on formation Chiemgau impact

Contribution to American Geophysical Union (AGU) Fall Meeting – Chiemgau Impact “Earthquake” Features

  • EP53B-1700: Meteorite Impact “Earthquake” Features (Rock Liquefaction, Surface Wave Deformations, Seismites) from Ground Penetrating Radar (GPR) and Geoelectric Complex Resistivity/Induced Polarization (IP) Measurements, Chiemgau (Alpine Foreland, Southeast Germany)
Authors
  • Kord Ernstson 
    • Faculty of Philosophy I, University of Würzburg
  • Jens Poßekel
    • Geophysik Poßekel Hornhof 14, 45479 Mülheim

CLICK the AGU Fall Meeting website with Abstract, Plain Language Summary and link for the DOWNLOAD of the POSTER.

Direct DOWNLOAD of the POSTER. Note that for better legibility the poster PDF can considerably be enlarged on the monitor.

cit. AGU Fall Meeting is the largest and preeminent Earth and space science meeting in the world.

meteorite impact "earthquake" wavy deformation Chiemgau impact

Meteorite craters: impact approachable

Already in the early days of the exploration of the Chiemgau impact crater strewn field at the beginning of the new millennium, a perfectly semicircular structure was discovered during a flight, which seemed to be punctured into the bank of the Inn river near Marktl. Geological research on the ground and sampling quickly proved the impact nature of this well 50 m measuring crater, which was introduced as No. 24 into the crater list of the Chiemgau impact, which had been meticulously conducted by local history researchers. The semicircular structure was easily explained by the erosion of floods in the valley of the Inn river

Not recorded in the topographical maps and soon blocked with a large stable it fell into oblivion and was only recently opened to the eye in full splendor by the Digital Terrain Model DGM 1 (Fig. 1).

Bildschirmfoto 2017-08-14 um 18.56.49

Fig. 1. Aiching semi crater in the Inn river bank vis-à-vis the town of Marktl (UTM coordinates 338863, 5346952). Digital Terrain Model. Continue reading

The Chiemgau meteorite impact at the Lunar and Planetary Science Conference (LPSC) 2017: new contributions (abstract articles)

At the this year’s prestigious meeting of  the Lunar and Planetary Institute in The Woodlands, Texas, the following abstract articles that relate to the Chiemgau meteorite impact have been published:

Molnár M. Ventura K. Švanda P. Štaffen Z. Rappenglück M. A., Ernstson, K.:

Chrudim – Pardubice: Evidence for a Young Meteorite Impact Strewn Field in the Czech Republic –  Widespread finds of rocks and glasses with shock metamorphism and typical of meteorite impact suggest a Holocene impact event in the Czech Republic.

The article reports on a newfound very young meteorite impact event in the Czech Republic amazingly similar to the Chiemgau and Saarland (Nalbach) impact events in Germany. A possibly simultaneous impact having affected Central Europe over a distance of more than 650 km is discussed. Click the abstract article!

Procházka V. Trojek T.
XRF- and EMP- Investigation of Glass Coatings and Melted Domains of Pebbles from Craters in Chiemgau, Germany
Shock-induced melting mainly of biotite (?) produced typically porous veinlets. External glass coatings are rich in K and Cu (from plant biomass?), rarely in Ni.

The Czech authors report on investigations of shocked cobbles excavated from the Kaltenbach and #004 impact craters belonging to the Chiemgau meteorite impact strewn field. Click the abstract article!

 

The Digital Terrain Model (DTM) and the craters of the Chiemgau meteorite impact strewn field

Digital Terrain Model DGM 1 - Chiemgau impact meteorite craters

The Digital Terrain Model (DTM) and the evaluation of known and the search for new craters in the Chiemgau meteorite impact strewn field  [PDF DOWNLOAD]

Kord Ernstson* (2017)

Abstract. – For several known and a few newly proposed meteorite craters in the Chiemgau meteorite impact strewn field the LiDAR data of the Digital Terrain Model DTM have been processed to reveal various maps and cross sections based on a high-resolution mesh down to 1 m and contour interval down to 0.2 m. The data processing highlights particular crater features that remain hidden in fieldwork and on conventional topographic maps and even may debunk mistaken structures.

********************************************************************************************************* *Faculty of Philosophy I, University of Würzburg, Germany, kernstson@ernstson.de

Content 1 Introduction – 2 The Chiemgau meteorite impact event 3 Data processing 3.1 Terrain imagery 3.2 Horizontal gradient 3.3 Data filtering 3.4 Cross sections 4 Examples 4.1 Small craters in the DTM 4.2 Peripheral depressions around small craters 4.3 Medium-sized craters in the DTM 4.4 Mistaken structures 5 A possible large-sized crater in the DTM 6 Discussion and conclusions 7 References Appendix

The Chiemgau impact at the LPSC 2016

Bildschirmfoto 2016-03-26 um 12.04.41

At the this year’s internationally prestigious Lunar and Planetary Science Conference in the Woodlands, Texas, two contributions on the Chiemgau meteorite impact crater strewn field in Germany have been presented (after preceding LPSC contributions in the years 2011, 2012 and 2014).

Our Czech colleagues presented their results on rock magnetic properties of shocked rocks from smaller craters in the strewn field (click to download the full abstract article):

Evidence for superparamagnetic nanoparticles in limestones from Chiemgau crater field, SE Germany. V. Procházka1 , G. Kletetschka1 , 1 Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Charles Univ., Albertov 6, CZ-12843 Praha 2, Czech Republic (vprochaska@seznam.cz)

and the Chiemgau Impact Research Team (CIRT) reported on the meteorite impact-induced Lake Chiemsee tsunami (click to download the full abstract article):

EVIDENCE OF A METEORITE IMPACT-INDUCED TSUNAMI IN LAKE CHIEMSEE (SOUTHEAST GERMANY) STRENGTHENED. K. Ernstson, Faculty of Philosophy I, University of Würzburg, D-97074 Würzburg, Germany, kernstson@ernstson.de

T. Shumilova, S.N. Tkachev, S. Isaenko, S. Shevchuk, M.A. Rappenglück & V.A. Kazakov: new article in the journal CARBON

Only recently an article has been published in the reputable journal Carbon with our colleague Dr. Tatyana Shumilova, Russian Academy of Sciences, as first author and Dr. M.A, Rappenglück from our CIRT research group as one of the co-authors:

T. Shumilova, S.N. Tkachev, S. Isaenko, S. Shevchuk, M.A. Rappenglück & V.A. Kazakov (2016): A “diamond-like star” in the lab. Diamond-like glass. – Carbon 100(100):703-709. Continue reading

A cross-bedded diamictite: evidence of a big Lake Chiemsee tsunami in the Chiemgau meteorite impact event strengthened

A cross-bedded diamictite: evidence of a big Lake Chiemsee tsunami in the Chiemgau meteorite impact event strengthened

Kord Ernstson*

Abstract. – Gravel exploitation near Lake Chiemsee has exposed a quarry face exhibiting a larger diamictite deposit with significant cross bedding. The grain size of the material varies between silt and sharp-edged blocks up to the size of 1 m. In the majority, even the smaller fraction of limestone particles does not show any roundness. Frequently, limestone cobbles are covered with multiple sets of scratches and polish. For the cross-bedded diamictite exposed at the edge of a flat chain of hills a glacial deposit, e.g., as an end moraine, can be excluded. The multiple, small-scale cross-bedding units as well as the transport over short distance point to a close-by, short-term process of formation. It is interpreted as the result of a big Lake Chiemsee tsunami that was triggered in the Holocene Chiemgau impact event. The deposit also raises issues relevant to a Lake Chiemsee glacier.

***************************************************************************************************

* Faculty of Philosophy I, University of Würzburg, Germany; kernstson@ernstson.de

****************************************************************************************************

Continue reading

The Nalbach (Saarland, Germany) impact at the LPSC 2015

At the this year’s Lunar and Planetary Science Conference in the Woodlands, Texas, the abstract article entitled “Strong shock metamorphism and a crater: evidence of a Holocene meteorite impact event near Nalbach (Saarland, Germany)” by Nico Berger, Werner Müller and Kord Ernstson was presented. Here, we in particular point out that the peculiar findings in the Nalbach area are revealing remarkable similarities to impact features in the Holocene large Chiemgau impact strewn field in southeast Germany, and meanwhile the possibility that the Nalbach impact is a companion to the Chiemgau impact is seriously being discussed. Click on the image to open the full text!

LPSC 2015 abstract Nalbach impact