Chiemgau impact (hypothesis) is a term that denotes a meanwhile manifoldly proved meteorite impact that happened as an extraordinary event in prehistoric times (Bronze Age, Celtic era) in southeast Bavaria (Germany). A large cosmic body (a comet or an asteroid) hit the ground and left a big crater strewn field with all relevant impact evidence. This website focuses on all aspects of the related scientific research including reports and publications on geosciences, astronomy, archeology and science of history, but also on discussions of this spectacular research area. In the Wikipedia four-line article "Chiemgau impact hypothesis" this event is characterized as "an obsolete scientific theory" that has been raised "by a team of hobby-archaeologists". This is grossly deceptive and typifies the standpoint of a few obstinate opponents of the Chiemgau impact, hence taking their side and thwarting Wikipedia requirements.
A recent article by Kenkmann et al. in the GSA Bulletin titled
Secondary cratering on Earth: The Wyoming impact crater field
has led to a plethora of noticeable reactions especially on the internet and has led to an extensive critical commentary article that can be clicked HERE on the website for an introduction and HERE as a PDF. The commentary article, which comprehensively contrasts the Wyoming impact crater field with the Chiemgau impact crater field, accuses the authors of serious methodological errors and scientifically incorrect work. The conclusion is that this alleged Wyoming secondary crater field does not exist.
Three Examples of the Wyoming impact craters. Google Earth.
Chiemgau impact crater: Digital Terrain Model DGM 1 – topographic contour lines.
The Chiemgau Impact – a meteorite impact in the Bronze-/Iron Age and its extraordinary appearance in the archaeological record
Barbara Rappenglück (Gilching), Michael Hiltl (Oberkochen), Michael Rappenglück (Gilching), Kord Ernstson (Würzburg)
Abstract. – The largest meteorite impact of the Holocene known to date occurred during the Bronze/Iron Age in southeastern Bavaria, between Altötting and the edge of the Alps. The event is known as the “Chiemgau Impact”. More than 100 craters with diameters from 5m up to several hundred meters are distributed over an area of about 60km length and 30km width. Finds of meteoric material confirm the event as well as the widespread evidence of so-called shock metamorphosis in the rock. The article focuses on new investigations of “slags” from an archaeological excavation in Chieming-Stöttham, on the eastern shore of Lake Chieming. Six objects analysed with polarisation microscope and SEM-EDS turned out to be complex combinations of rock and metal particles. While the rock components show the shock metamorphosis typical for a meteorite impact, the metallic components proved to be remnants of artefacts made of bronze or iron with a high lead content. Together they form an impact rock. To our knowledge, these are the first examples worldwide in which artefacts have become components of an impact rock. In addition, the special nature of the metallic components and the consideration of the archaeological context allow the more precise dating of the Chiemgau Impact to approximately 900–600 BC.
Four new Proceedings contributions – three of them directly related to the Chiemgau impact.
The May conference “Yushkin Readings 2020 – Modern Problems of Theoretical, Experimental, and Applied Mineralogy” has been postponed for the time being to 7-10 December 2020 due to the pandemic. In anticipation of this, the 407-page conference proceedings of all papers accepted for presentation have now been printed and published on the Internet. The four papers submitted by the CIRT together with co-authors from ZEISS (Dr. Hiltl), Oxford Instruments (Dr. Bauer) and the Russian Academy of Sciences (Dr. Shumilova) are included.
An eight kilogram chunk and more: evidence for a new class of iron silicide meteorites from the Chiemgau impact strewn field (SE Germany)F. Bauer, M. Hiltl, M. A. Rappenglück, K. Ernstson
Evidence of meteorite impact-induced thermal shock in quartzK. Ernstson
Chiemite — a high PT carbon impactite from shock coalification/carbonization of impact target vegetationK. Ernstson, T. G. Shumilova
Artifact-in-impactite: a new kind of impact rock. Evidence from the Chiemgau meteorite impact in southeast GermanyB. Rappenglück, M. Hiltl, K. Ernstson
DIGITAL TERRAIN MODEL (DTM) TOPOGRAPHY OF SMALL CRATERS IN THE HOLOCENE CHIEMGAU (GERMANY) METEORITE IMPACT STREWN FIELD. K. Ernstson and J. Poßekel
The Digital Terrain Model (DTM) of craters in the Chiemgau meteorite impact strewn field with extreme topographic resolution excludes anthropogenic and glacial origin in principle and provides insight into unusual formation processes.
NOT JUST A RIMMED BOWL: GROUND PENETRATING RADAR (GPR) IMAGERY OF SMALL CRATERS IN THE HOLOCENE CHIEMGAU (GERMANY) METEORITE IMPACT STREWN FIELD. J. Poßekel and K. Ernstson
High resolution ground penetrating radar (GPR) measurements over craters of the Holocene Chiemgau impact meteorite crater strewn field reveal instructive images of complex structures and chronological sequences during excavation.
Due to the virus pandemic, the annual International Museum Day in May has been cancelled. The Impact Museum in Grabenstätt at Lake Chiemsee has taken part in this attractive event in previous years and has planned to do so again this year. The organizer of the Museum Day, the Deutsche Museumsbund e.V., had the idea of encouraging interested museums to take part in a virtual museum for visitors, and this prompted the sponsors of the Grabenstätt Museum to actually set up such a virtual museum, which was also brought up to the very latest state of scientific research and knowledge.
Practically all texts and inscriptions are in German, but we think that a large part of the contributions are self explaining or become more or less understandable with computer translation aids.
Although the 51st Lunar & Planetary Science Conference (LPSC) has been cancelled for this year because of the virus, accepted contributions (abstracts and posters) will be treated as usual as registered, citable publications with archiving at LPI and NASA.
This year there is an interesting CIRT contribution on new findings related to the Chiemgau impact event.
NEAR-GROUND AIRBURST CRATERING: PETROGRAPHIC AND GROUND PENETRATING RADAR (GPR) EVIDENCE FOR A POSSIBLY ENLARGED CHIEMGAU IMPACT EVENT (BAVARIA, SE-GERMANY).
Kord Ernstson , Jens Poßekel , Michael A. Rappenglück
Poster (in high pdf resolution) and abstract can be downloaded here.
SEM image of chiemite, the “coke” of Robert Darga and Robert Huber, containing diamond and carbines.
At this year’s meeting of the European Geosciences Union (EGU) in Vienna in April, Dr. Robert Huber (marine geologist at Marum, Center for Marine Environmental Sciences, University of Bremen) and Dr. Robert Darga (ice age geologist, director of the Mammut Museum in Siegsdorf, Chiemgau, Oberbayern) once again took an all-out blow against the Chiemgau impact, which is now generally recognized (despite all the Wikipedia twists and manipulations). Obviously they succeeded in persuading some other scientists to present a joint poster, on which their crude ideas were presented: “If You Wish Upon A Star. Chiemite: An Anthropocene Pseudo-Impactite” The three coauthors of the poster are from Australia (Mineral Resources, CSIRO, Federal Agency for the improvement of the economic and social performance of industry).
We leave it at the short note that the chiemite, which is described in international, renowned peer-reviewed publication organs as high pressure/high temperature impactite with the contents of diamond and carbines (T = 2500 – 4000 K, P = several GPa), is of terrestrial origin and has originated from a spontaneous shock carbonization of the vegetation (wood, peat) of the Chiemgau impact area. The published methods of the chiemite investigation were: optical and atomic force microscopy, X‐ray fluorescence spectroscopy, scanning and transmission electron microscopy, high‐resolution Raman spectroscopy, X‐ray diffraction and differential thermal analysis, as well as by δ13C and 14C radiocarbon isotopic data analysis.
Scientifically the poster presentation of these impact critics, in which not a single reference is brought to the Chiemgau impact and not a single reference to the chiemite (see e.g. Chiemgau impact: new comprehensive article on the chiemite impactite, Shumilova, T.G. et al. (2018)) is absolutely worthless, far from any scientific seriousness, and should cause mockery at most in a respectable science scene. One wonders why such a pamphlet could be shown at all on the conference.